Automated Methods for Atmospheric Correction and Fusion of Multispectral Satellite Data for National Monitoring

نویسندگان

  • H. Chen
  • G. Hobart
  • B. Rancourt
  • M. Murdoch
  • J. Love
  • A. Dyk
چکیده

The Earth Observation for Sustainable Development of Canada’s forests (EOSD) project monitors Canada's forests from space. Canada contains ten-percent of the world’s forests. Initial EOSD products are land cover, forest change, forest biomass, and automated methods. There are more than 500 LANDSAT TM or ETM+ scenes required for a single coverage of Canada’s forests. Multi-temporal analysis using satellite data requires automation for conversion of these data to common units of exoatmospheric radiance or ground reflectance. During the next ten years the EOSD project will use a variety of Landsat optical and Radarsat sensors. A diverse set of ancillary and satellite data formats exist which require the development of adaptable data ingest and processing streams. Legacy LANDSAT TM and ETM+ data are available in a number of different formats from several national and US suppliers. In this paper, we present an automated system for managing processing streams for calibration and atmospheric correction of LANDSAT TM and ETM+ data to create data sets ready to analyze for EOSD products. Using known forest attributes from GIS data and field measurements, we validated our results of studies undertaken to assess spectral signal variability using both atsensor radiance and ground reflectance for LANDSAT TM and ETM+ for a test site on Vancouver Island, BC. We present a strategy for correcting and fusing multi-source and multitemporal satellite data for meeting EOSD requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)

Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...

متن کامل

Atmospheric correction models for high resolution WorldView-2 multispectral imagery: A case study in Canary Islands, Spain

The emergence of high-resolution satellites with new spectral channels and the ability to change its viewing angle has highlighted the importance of modeling the atmospheric effects. So, atmospheric correction serves a critical role in the processing of remotely sensed image data, particularly with respect to identification of pixel content. Efficient and accurate realization of images in units...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

Error estimates for a histogram in scatterometer geophysical model function estimation

Radiometric correction of visible and in-frared remote sensing data at the Canada Centre for remote sensing, " Int. Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas, " Int. An alternative simple approach to estimate atmospheric correction in multitemporal studies, " Int. An improved dark-object subtraction technique for ...

متن کامل

Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary

The Multispectral Wide Field of View (WFV) camera on the Chinese GF-1 satellite, launched in 2013, has advantages of high spatial resolution (16 m), short revisit period (4 days) and wide scene swath (800 km) compared to the Landsat-8/OLI, which make it an ideal means of monitoring spatial-temporal changes of Suspended Particulate Matter (SPM) in large estuaries like the Yangtze Estuary. Howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001